

RESOURCES FOR "HSC-I CHEMISTRY" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

TABLE OF CONTENTS:

- 1. Multiple Choice Questions (MCQs)
- 2. Constructed Response Questions (CRQs)
- 3. Extended Response Questions (ERQs)

1: Multiple Choice Questions:

The Multiple-Choice Questions with a stem, correct answer and 3 distractors or plausible wrong answers format is designed to assess the content and thinking of students from; R (Remembering); U(Understanding) and A (Applying, Analyzing, Evaluating, Creating). The questions are also classified into three difficulty levels accordingly; D(DIFFICULT), M (MODERATE), E (EASY)

HOW TO ATTEMPT AN MCQ:

MCQ:

- EACH MCQ HAS FOUR OPTIONS, A, B, C AND D. SELECT ONE OPTION AS THE BEST ANSWER AND FILL IN THE CIRCLE OF THAT OPTION, FOLLOWING THE INSTRUCTIONS GIVEN BY THE INVIGILATOR.
- USE BLACK PEN/PENCIL TO FILL IN THE CIRCLE.

Correct Way	Wr	ong V	Vays
1	1	2	3
a	a	a	a
Ъ	b	b	b
C	\otimes	C	\oslash
d	d	d	d

S #	MCQ'S MATERIAL	KEY	CL	DL
	CHAPTER # 1 INTRODUCTION TO FUNDAMENTAL CO	ONCEPT IN CHEMIS	TRY	
1	Which number has five significant Figures:	A. 402.10	R	Ε
	A. 402.10			
	B. 4000			
	C. 80000			
	D. 40300			
2	This one of the following pairs has the same no. of molecules:	C. 10g H ₂ and 80g		
	A. $10g H_2$ and $10g CH_4$	CH_4	Α	D
	B. $10g H_2$ and $50g CH_4$			
	C. $10g H_2$ and $80g CH_4$			
	D. $10g H_2$ and $16g CH_4$			
3	This number has five significant figures			
	A. 391.10	A. 391.10	R	Ε
	B. 300002			
	C. 30000			
	D. 10300			
4	The volume of 3.01 x 10^{23} molecules of N ₂ gas at S.T.P will be:			
	A. 3 dm^3	B. 11.2 dm ³	U	Μ

@copyright ZUEB

4 | Page

	$D = 11.0 dm^3$			
	B. 11.2 dm G_{12} 22.4 h^{-3}			
	C. 22.4 dm D_{2} 28 $4m^{3}$			
_	D. 28 dm			
5	The octet rule is not valid for:	БИ	n	F
	A. N_2	\mathbf{D},\mathbf{H}_2	K	E
	B. CO_2			
	$C. O_2$			
	$D. H_2$			
0	The empirical formula of a compound is CH_2O and molecular			2.6
	mass is 60. Its molecular formula is:	$\mathbf{B.} \mathbf{C}_2 \mathbf{H}_4 \mathbf{O}_2$	Α	N
	A. CH_2O			
	B. $C_2H_4O_2$			
	$C_{1} C_{3} H_{6} O_{3}$			
7	D. $C_4 \Pi_8 O_4$			
/	which of the following Do NOT have the same number of			р
	molecules at S.I.P? A $1 dm^3$ of N and O	D. 0.2cm Cl_2 and 0.2 cm ³ SO	A	D
	A. Tulli of N ₂ and O ₂ $P_{1} = 500 \text{ cm}^{3} \text{ of } C_{1}$ and O	0.5cm SO ₂		
	D. Solution of C_{12} and O_2			
	C. 100 Chi of CO_2 and O_2 D. $O_2 cm^3$ of Cl ₂ and $O_2 cm^3 SO_2$			
Q	$\Delta t \mathbf{S} \mathbf{T} \mathbf{P} = 0.1$ mole of a gas occupies the volume:		+	
0	At S.1.P, 0.1 mole of a gas occupies the volume. $\Lambda = 22 \text{ Adm}^3$	B 2.24 dm ³	TT	м
	B 2.24 dm ³	D. 2.24 um	U	IVI
	$C = 2.4 \text{ fm}^3$			
	D 100 cm^3			
0	The number of moles in 58.5 α of NaCl is			
,	$\Delta = 58.5$ moles	D 1 mole	P	Б
	B 35 5moles	D. I more	K	Ľ
	C. 23 moles			
	D. 1 mole			
10	A beaker containing 180 gm of water contains:	B. 6.02 x 10 ²⁴		
	A. 6.02×10^{23} molecules	molecules	Α	Μ
	B. 6.02×10^{24} molecules			
	C. 10.02×10^{25} molecules			
	D. 12.01×10^{23} molecules			
11	The relative atomic mass of Chlorine (Cl) is 35.5 amu, the mass			
	in gram of 0.5 mole of chlorine gas is			
	A. 17.75 gm	B. 35.5gm	R	Ε
	B. 35.5gm			
	C. 71g			
	D. 142gm			
12	44 gm of CO_2 contains moles of CO_2			
	A. One	A. One	R	Ε
	B. Three			
	C. Two			
	D. Eight		-	
13	For the equation $CaCO_3 \rightarrow CO_2 + CaO$ when 0.72 moles of			
	Calcium carbonate burn it formsmoles of CO ₂			_
	A. 0.36	C. 0.72	U	Μ
	B. 1.44			
	C. 0.72			
	D. 1			
14	Find the volume of HCl when 500dm' of chlorine gas react			

		Γ	1	
	with Hydrogen	3		
	$H_2 + Cl_2 \rightarrow 2HCl$	D. 1000dm ³	U	D
	A. 500dm ³			
	B. 1000dm ³			
	C. 250dm ³			
	D. 1000dm ³			
15	What is 24 moles of $CaCO_3$ in grams?			
	A. 100	D. 2400	R	Ε
	B. 480			
	C. 240			
	D. 2400			
16	What is the molecular formula for a compound with the			
	empirical formula: K_2SO_4 and a molecular mass of 696g?	C. K ₈ S ₄ O ₈	U	D
	A. K_2SO_4			
	B. K_8SO_{16}			
	C. $K_8S_4O_8$			
	D. $K_8S_4O_{16}$			
17	What is the empirical formula of a molecule containing 18.7%			
	of Lithium, 16.3% of Carbon and 65.0% of oxygen?	B. Li ₂ CO ₃	U	D
	A. CO_2Li_3			
	B. Li_2CO_3			
	C. Li_3CO_2			
	D. $LiCO_5$			
18	What is the molecular formula if the empirical formula is CH_2O			
10	and the molecular molar mass is 180.18?	D. C4H12O6	U	М
	A. CH ₂ O		Ŭ	
	$\mathbf{B}, \mathbf{C}_{2}\mathbf{H}_{4}\mathbf{O}_{2}$			
	$C. C_4H_8O_4$			
	D. $C_6H_{12}O_6$			
19	What is the empirical formula for the following molecular	C. CH ₂		
	formula: C_5H_{12}		R	Ε
	A. C_5H_{12}			
	B. CH ₃			
	C. CH_2			
	D. $C_{2.5}H_6$			
20	Mole ratios are obtained from the	A. balanced		
	A. balanced chemical equation	chemical equation	A	M
	B. Periodic table			
	C. molar mass			
	D. formula mass			

S #	MCQ'S MATERIAL	KEY	CL	DL
	CHAPTER # 2 THREE STATES OF MA	ATTER		

	An ideal gas obeve gas laws at			
1	 A. High temperature B. High Pressure C. All temperature and Pressure D. Low temperature 	C. All temperature and Pressure	R	Е
2	The process of direct conversion of solid into vapours isA. CondensationB. SublimationC. EvaporationD. Neutralization	B. Sublimation	R	Е
3	Capillary action of liquid is due to A. Viscosity B. Surface tension C. Fluidity D. Density	B. Surface tension	U	М
4	The SI unit of viscosity is: A. Poise B. Milli poise C. Centipoise D. N.s.m ⁻²	D. N.s.m ⁻²	R	М
5	 If a=b≠c and α =β = Υ = 90⁰ the crystal structure is A. Cubic B. Tetragonal C. Orthorhombic D. Triclinic 	B. Tetragonal	A	М
6	The rate of diffusion of CO ₂ is equal to that of: A. CH ₄ B. CO C. C ₃ H ₈ D. SO ₆	B. C ₃ H ₈	R	D
7	The melting points of those substances which expand on melting increase when the pressure is A. Decreased B. Increased C. Kept unchanged D. Atmospheric	B. Increased	A	М
8	The atmospheric pressure recorded in different places at the same time are given below:NathiagaliHunzaMureeGilgit700 torr650 torr710 torr600 torrWater will boil first	D. Gilgit	A	E

	A Nathiagali			
	B. Hunza			
	C. Muree			
	D. Gilgit			
	Gases behave ideally in these conditions:			
	A. High pressure and high temperature	C. low		
9	B. High pressure and low temperature	pressure and	U	Μ
	C. low pressure and high temperature	high tomm and turns		
	D. low pressure and low temperature	temperature		
	Glass is a/an:			
	A. Crystalline solid	В.		
10	B. Amorphous solid	Amorphous	R	Ε
	C. Covalent solid	solid		
	D. Ionic solid			
	If $a=b=c$ and $\alpha = \beta = \gamma = 90^{\circ}$ then the shape of the crystal is			
	A. Cubic			
11	B. Tetragonal	A. Cubic	Α	D
	C. Hexagonal			
	D. Orthorhombic			
	The basis of motor oil grading is:			
	A. Viscosity			
12	B. Surface tension	A. Viscosity	U	Μ
	C. Vapour pressure			
	D. Boiling point			
	Diamond is very hard because of:	C. Close		
	A. sp^2 - Hybridization	carbon		
12	B. Vander Waals forces	atoms and	TI	М
13	C. Close packing of carbon atoms and large number of	large	U	IVI
	covalent bonds	number of		
	D. Large amount of energy is required to break the bond	covalent bonds		
	The presence of Hydrogen bonding in a liquid:	501140		
	A. increase the vapour pressure			
14	B. Decrease the Boiling Point	C. Decreases	R	Μ
	C. Decreases the viscosity	the viscosity		
	D. Causes no effect on Physical properties of the liquid			
	If $a \neq b \neq c$ and $\alpha = \Upsilon = 90^{\circ}$ and $\beta \neq 90^{\circ}$ the shape of the crystal			
	is			
	A. Tetragonal	В.		
15	B. Monoclinic	Monoclinic	Α	D
	C. Hexagonal	-		
	D. Triclinic			

		<u> </u>		[
16	 The vapour pressure of water at 100°C A. 760 torr B. 76 torr C. 14.2psi D. none of these 	A. 760 torr	U	Μ
17	Two solids, having the same crystalline structure are called:A. IsomorphousB. PolymorphousC. IsotopesD. Allotropes	A. Isomorphous	R	Е
18	On Kelvin scale absolute zero is equal to A. 273.16 ⁰ C B. 0 ⁰ C C. 20K D273.16 ⁰ C	A273.16 ⁰ C	R	Е
19	 the number of crystal system on basis of unit cell is A. 5 B. 6 C. 7 D. 8 	C. 7	U	М
20	The value of R (Gas constant) when pressure is expressed in N/m^2 is A. *0.0821 dm ³ atmosphere K ⁻¹ mol ⁻¹ B. 8.3143 J K ⁻¹ mol ⁻¹ C. 8.213 dm ³ atmosphere K ⁻¹ mol ⁻¹ D. 9.8 J K ⁻¹ mol ⁻¹	B. 8.3143 J K ⁻¹ mol ⁻¹	R	Е
21	Real gases are nearer to ideality atA. High temperature and low pressureB. High temperature and high pressureC. Low temperature and Low pressureD. Low temperature and High pressure	A. High temperature and low pressure	U	D
22	The volume of a gas could theoretically be zero at A. 0 ⁰ C B. 0K C. 273K D273 ⁰ C	С273 ⁰ С	R	Е
23	The total pressure of a mixture of gases is the sum of partial pressure of each gas present in the mixture This is stated by A. Daltons B. Graham C. Charles	A. Daltons	A	Е

	D Boyles			
	A milli poise			
24	B. Milligram	A, milli poise	R	Е
	C. Joule	in min poise		2
	D. Ampere			
	Real gases deviate from ideality a			
	A. High T & low P	D Low T &		
25	B. Low T & High P	B. LOW I & High P	Α	Μ
	C. High T & High P	ingn i		
	D. Low T & Low P			
	The boiling point of a liquid with increase in pressure			
	A. Decrease			
26	B. Increase	B. Increase	Α	D
	C. Remain constant			
	D. Not effected			
	The melting point of those substance which expand on melting			
	increase when the pressure is			
27	A. Decrease	DI	TT	м
27	B. Increase	B. Increase	U	M
	C. Kept unchanged			
	D. Atmospheric			
	In comparison of rate diffusion, Helium diffusestimes			
	A Half time			
28	B. two	C. four	R	Ε
	C. four			
	D. Eight			
	This instrument is used to measure atmospheric pressure			
	A. Barometer			
29	B. Colorimeter	A. Boromotor	R	Ε
	C. Spectrometer	Darometer		
	D. Voltmeter			
	Graphite can conduct electricity			
	A. from any direction	D Donallal to		
30	B. Parallel to plane	D. Faraiiei to nlane	U	Μ
	C. Perpendicular to plane	Plane		
	D. diagonal to plane			

S#	MCQ'S MATERIAL	KEY	CL	DL
	CHAPTER # 3 ATOMIC STRUCT	TURE		

1	The maximum number of electrons accommodated in f-	C. 14	U	Ε
	orbital is			
	A. 7			
	B. 10			
	C. 14			
-	$\begin{array}{c} D. 15 \\ \hline \end{array}$	D 7	D	M
2	(n + 1) value for 5d orbital is	D. 7	K	M
	A. 4 P. 5			
	D 7			
3	This color has the shortest wavelength in the visible	B. Violet	U	М
-	spectrum is	20 110100	c	
	A. red			
	B. Violet			
	C. Green			
	D. Yellow			
4	This series of lines is produced when the electron jumps	B. Balmer	Α	Μ
	from 4 th to 2 nd orbit			
	A. Lyman			
	B. Balmer			
	C. Brackette			
-	D. Paschen			
5	The maximum number of electrons in a particular energy	A. $2n^2$	Α	Μ
	level is:			
	A. $2n^2$			
	B. n C = 2(2m+1)			
	D $2(21+1)$			
	$\begin{array}{c} D \\ D $			
1.6	The energy of each quantum of radiation is directly	K Frequency	R	D
6	proportional to its:	B. Frequency	R	D
6	proportional to its: A. wavelength	B. Frequency	R	D
6	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency	B. Frequency	R	D
6	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number	B. Frequency	R	D
6	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy	B. Frequency	R	D
6 7	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature	B. Frequency C. Y rays	R	D
6 7	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays	B. Frequency C. Y rays	R	D M
6 7	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays	B. Frequency C. Y rays	R	D M
6 7	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays	B. Frequency C. Y rays	R	D M
6 7	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays	C. Y rays	R A	D M
6 7 8	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by :	B. Frequency C. Y rays DZe ² /r	R A A	D M E
6 7 8	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. $7a/r$	B. Frequency C. Y rays DZe ² /r	R A A	D M E
6 7 8	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r	B. Frequency C. Y rays DZe ² /r	R A A	D M E
6 7 8	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r D. $-Ze^2/r$	B. Frequency C. Y rays DZe ² /r	R A A	D M E
6 7 8 8	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$	B. Frequency C. Y rays DZe ² /r	R A A	D M E M
6 7 8 9	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons	B. Frequency C. Y rays DZe ² /r B. Electrons	R A A U	D M E M
6 7 8 9	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons	B. Frequency C. Y rays DZe ² /r B. Electrons	R A A U	D M E M
6 7 8 9	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons	B. Frequency C. Y rays DZe ² /r B. Electrons	R A A U	D M E M
6 7 8 9	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons D. Neutrons	B. Frequency C. Y rays DZe ² /r B. Electrons	R A A U	D M E M
6 7 8 9 10	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons D. Neutrons The number of orbitals in each energy level is given by	B. Frequency C. Y rays DZe ² /r B. Electrons D. n ²	R A A U R	D M E M E
6 7 8 9 10	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons D. Neutrons The number of orbitals in each energy level is given by formula :	B. Frequency C. Y rays DZe ² /r B. Electrons D. n ²	R A A U R	D M E E
6 7 8 9 10	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons D. Neutrons The number of orbitals in each energy level is given by formula : A. $2n^2$	B. Frequency C. Y rays DZe ² /r B. Electrons D. n ²	R A A U R	D M E E E
6 7 8 9 10	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. γ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons D. Neutrons The number of orbitals in each energy level is given by formula : A. $2n^2$ B. (2l+1)	B. Frequency C. Y rays DZe ² /r B. Electrons D. n ²	R A A U R	D M E E E
6 7 8 9 10	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons D. Neutrons The number of orbitals in each energy level is given by formula : A. $2n^2$ B. $(2l+1)$ C. $2(2l+1)$	B. Frequency C. Y rays DZe ² /r B. Electrons D. n ²	R A A U R	D M E M
6 7 8 9 10	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. Υ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons D. Neutrons The number of orbitals in each energy level is given by formula : A. $2n^2$ B. $(2l+1)$ C. $2(2l+1)$ D. n^2	B. Frequency C. Y rays DZe ² /r B. Electrons D. n ²	R A A U R	D M E E E
6 7 8 9 10 11	The energy of each quantum of radiation is directly proportional to its: A. wavelength B. Frequency C. Wave number D. Source of energy These radioactive rays are non-material in nature A. α rays B. β rays C. γ rays D. canal rays The potential energy of an electron can be denoted by : A. Ze^2/r^2 B. Ze/r C. Ze^2/r^2 B. Ze/r D. $-Ze^2/r$ Most of the radiations coming from pitchblende were : A. Protons B. Electrons C. Positrons D. Neutrons The number of orbitals in each energy level is given by formula : A. $2n^2$ B. $(2l+1)$ C. $2(2l+1)$ D. n^2 The uncertainty principle is applied to :	B. Frequency C. Y rays DZe ² /r B. Electrons D. n ² C. Electron	R A A U R A	D M E

		1		1
	B. Cricket ball			
	C. Electron			
	D. Earth			
12	Quantum number values of 3d orbital are	A. n=3, l=2	U	Μ
	A. n=3, 1=2			
	B. n=3,1=3			
	C. $n=2.1=2$			
	D. $n=3.1=0$			
13	The value of Planck's constant h is	C. 6.625 x 10 ⁻³⁴	U	М
10	A 4.803×10^{-10} e su	IS	U	171
	$\begin{array}{c} B & 9.1 \times 10^{-31} \text{ kg} \end{array}$	0.0		
	$C = 6.625 \times 10^{-34} \text{ JS}$			
	D $1.602 \times 10^{-34} \text{ Kg}$			
14	$D. 1.002 \times 10^{-1} \text{ Kg}$	D 5		М
14	The $n + 1$ value of 4p orbital is	Б. 5	K	IVI
	A. 2			
	B. 5			
	C. 7			
	D. 4			
15	The particles having the mass 1836 times that of electron	B. Proton	Α	D
	is:			
	A. Neutron			
	B. Proton			
	C. Meson			
	D. Hyperon			
16	On emission of α - particles αU^{238} changes into :	A. a_{0} Th ²³⁴	U	М
10	A $_{o}$ Th 234	· · · 90 · · ·	U	171
	$\mathbf{B} = \mathbf{B} \mathbf{B}^{226}$			
	$C = \frac{10}{2}$			
	D D^{231}			
15	$D. g_1 Fa$			T
17	No two electrons can have all the four quantum numbers	A. Pauli's	K	E
	identical. Is the statement of?	exclusion		
	A. Pauli's exclusion principle	principle		
	B. Hund's rule			
	C. Aufbau rule			
	D. (n+l) rule			
18	The maximum number of unpaired electrons in 3d energy	A. 5	R	Ε
	level is			
	A. 5			
	B. 6			
	C. 7			
	D. 8			
19	An electron is said to be excited when it	C. Jumps to	U	М
	A Loses energy	higher orbit	·	174
	B Jumps to lower orbit	inglier of bit		
	C Jumps to higher orbit			
	D anters the storm			
20	D. enters the atom			T
20	An orbital can have a maximum number of	C. 5 electrons	К	Ľ
	A. 2 electrons			
	B. 6 electrons			
	C. 8 electrons			
	D. 32 electrons			
21	The colour of light depends upon its	A. Wavelength	U	D
	A. Wavelength			
	-			1
	B. Velocity			
	B. Velocity C. Source			
	B. Velocity C. Source D. None			
2.2	B. Velocity C. Source D. None If the jonic radii of K^+ and F are about $1.34^0 \Delta$ the	B. 2 31 ⁰ A &	R	F
22	 B. Velocity C. Source D. None If the ionic radii of K⁺ and F⁻ are about 1.34⁰A, the expected value of atomic radii of K and F is respectively. 	B. 2.31 ⁰ A & 0 64 ⁰ A	R	E

	A. $1.34^{\circ}A \& 1.34^{\circ}A$			
	B. $2.31^{\circ}A \& 0.64^{\circ}A$			
	C. $0.64^{\circ}A \& 2.31^{\circ}A$			
	D. 2.31°A & 1.34°A			
23	Quantum number values for 2p orbitals are	D. n=2 , l=1	Α	Ε
	A. n=1, 1=0			
	B. n=2, 1=0			
	C. n=2, l=2			
	D. $n=2$, $l=1$			
24	The e/m value for positive rays is maximum for	A. Hydrogen	R	Ε
	A. Hydrogen			
	B. Helium			
	C. Oxygen			
	D Nitrogen			
25	Quantum number values for 2n orbitals are	D n-2 l-1	٨	М
23	Quantum number values for $2p$ orbitals are	D. 11-2, 1-1	A	IVI
	A. II-1, I-0 B. n-2, I-0			
	$\begin{array}{c} \text{D. } 11=2, 1=0\\ \text{C} = 2, 1=2 \end{array}$			
	$\begin{array}{c} \text{C. } & \text{II=}2, \text{I=}2\\ \text{D} & \text{m=}2, \text{I=}1 \end{array}$			
26	$\frac{D}{11} = \frac{1}{2}, \frac{1}{1} = 1$	D T7+1		
26	I his is not isoelectronic with Na	D. K ¹¹	A	D
	A. Ne			
	$\begin{array}{c} \mathbf{B}, \mathbf{F} \\ \mathbf{G}, \mathbf{M} \\ \mathbf{F} \end{array}$			
	$\begin{array}{c} C. Mg^{+2} \\ \end{array}$			
	D. K ⁺¹			
27	In the following configuration, rules violated are : $1S^2$,	C. Aufbau and	U	Μ
	$2S^2$, $2Px^2$, $2Py^1$, $2Pz^0$, $3S^2$, $3P^6$	Hund's rule		
	A. Aufbau and $(n + l)$ rule			
	B. $(n+l)$ and Hund's rule			
	C. Aufbau and Hund's rule			
	D. Aufbau, (n+1) and Hund's rule			
28	This spectrum behaves as Fingerprint for the	D. none of	R	Е
	identification of any element::	them		
	A. Continuous			
	B. line			
	C. Emission			
	D. none of them			
29	Select the isoelectronic with Mg^{+2}	B Na ⁺	R	F
	Δ K ⁺	Dirta	N	12
	$\mathbf{B} \mathbf{N} \mathbf{a}^+$			
	D. Na C. Na			
20	D. Cl The charge of an electron is Coulomb	D 16 - 10 ⁻¹⁹	ΤT	ЛЛ
30	The charge of an electron isCoulomb.	Б. 1.0 X 10	U	IVI
	A. -2.40×10 D. $1.6 - 10^{-19}$			
	B. -1.0×10^{-19}			
	C. 1.6×10^{-7}			
	D. 1096/8cm			
31	The value of Rydberg constant is	A. 109678 cm ⁻	Α	Μ
	A. 109678cm			
	B. 109678m ⁻			
	C. 901768cm ⁻			
	D. 901867cm			
32	The following pair of ions is isoelectronic :	A. Na ⁺¹ & Mg^{+2}	Α	D
	A. $Na^{+1}\hat{\&}Mg^{+2}$			
	B. F & O			
	C. Li^+ & Na ⁺			
	D. $S^{-2} \& O^{-2}$			
33	An orbital can have a maximum of electron	A 2	U	М
	A. 2	11. 4	U	17.
		1		

	-	T		1
	B. 6			
	C. 10			
	D. 32			
34	If the difference of electronegativity value for two bonding	D. Covalent	R	Ε
	atoms is less than 1.7 the bond will be			
	A. Totally polar			
	B. Non-polar			
	C. ionic			
	D. Covalent			
35	The large values of Electron affinity shows that the	B. Strong	R	Ε
	elements are	Oxidizing		
	A. Strong Reducing agent	agent		
	B. Strong Oxidizing agent			
	C. Electropositive			
	D. Neutral			
36	For M shell the number of orbitals are	C. 9	U	Μ
	A. 1			
	B. 4			
	C. 9			
	D. 16			
37	Lyman series is related to region	B. ultraviolet	R	Ε
	A. visible			
	B. ultraviolet			
	C. Infrared			
	D. Infra-red			
38	Visible region belongs to series	B. Balmer	U	Μ
	A. Lyman			
	B. Balmer			
	C. Brackette			
	D. Paschen			
39	This source does not give a continuous spectrum.	D. inert gas	U	Μ
	A. Air	lamp		
	B. Sunlight	_		
	C. Bulb			
	D. inert gas lamp			
40	Charge was discovered by	C. Faradays	U	Μ
	A. Moseley			
	B. Rutherford			
	C. Faradays			
	D. JJThomson			

S #	MCQ'S MATERIAL	KEY	CL	DL		
	CHAPTER # 4 CHEMICAL BONDING					
1	This is not a primary bond:	D. Hydrogen	Α	Е		
	A. Ionic bond	bond				
	B. Covalent bond					
	C. Dative bond					
	D. Hydrogen bond					
2	This one of the following compound has zero	B. CCl ₄	R	Μ		
	dipole moment:					
	A. NH_3					
	B. CCl_4					
	C. HF					
	D. H_2O					
3	The Hydrogen halide has the highest percentage	A. HF	U	Μ		

	of ionic character:			
	A. HF			
	B. HCl			
	C. HBr			
	D. HI			
4	1 Debye is equals to	C. 3.335 x	R	Μ
	A. 2.25 x 10 ⁻³³	10-30		
	B. 3.4 x 10 ⁻⁴⁰			
	C. 3.335 x 10 ⁻²³			
	D. 3.335×10^{-30}			
5	The molecule has the maximum bond angle	A. CS_2	Α	Е
	A. CS_2			
	B. NH ₃			
	C. SO_2			
	D. H_2O			
6	The energy of this bond is greatest	C. N ₂	R	D
	A. \widetilde{CH}_4			
	B. O_2			
	C. N_2			
	D. Cl_2			
7	The dipole moment of this molecule is zero	B. CO ₂	Α	Μ
	A. NH_3			
	B. CO_2			
	C. H_2O			
	D. HCl			
8	The number of bond in C_2H_2 molecule is :	C. Three σ	Α	Ε
	A. One σ and two π bonds	and two π		
	B. three σ and one π bonds	bonds		
	C. Three σ and two π bonds			
	D. Two σ and two π bonds			
9	The molecule has the maximum Bond angle	B. CO_2	\mathbf{U}	Μ
	A. NH ₃			
	B. CO_2			
	C. H_2O			
4.0	D. HCl		-	
10	The energy of this bond is greatest	C. N_2	K	E
	A. CH ₄			
	$\mathbf{B} \cdot \mathbf{O}_2$			
	\mathbf{C} . \mathbf{N}_2			
11	D. Cl ₂	D. C. 1 1		D
11	The S.I unit of Dipole moment is	D. Coulomb –	A	ע
	A. Dyne/cm D. Doise	metre		
	B. POISE			
	C. Debye D. Coulomb matra			
10	D. Coulomb – metre	D 100	TT	ЛЛ
14	Dipole moment of CS_2 is zero, Hence the bond	D. 180°	U	IVI
	angle is :			
	A. 90°			
	B. 109.5°			
	C. 120°			
	D. 180°			

13	The presence of Hydrogen bonding in a liquid :	C. Decreases	U	Μ
	A. increase the vapour pressure	the viscosity		
	B. Decrease the Boiling Point			
	C. Decreases the viscosity			
	D. Causes no effect on Physical properties of			
	the liquid			
14	Bond energy of Hydrogen bond is in between :	B. 20 – 40	R	Μ
	A. 10 - 20 KJ/mol	KJ/mol		
	B. 20 – 40 KJ/mol			
	C. 40 - 50 KJ/mol			
	D. 50 -60 KJ/mol			
15	The bond formed in fluorine molecule is due to	C. p-p	Α	D
	the overlap of orbitals			
	A. s-s			
	B. s-p			
	C. p-p			
	D. none of these			
16	Bond energy of $C \equiv C$ as compared to $C = C$ is :	A. greater	U	Μ
	A. greater			
	B. Lesser			
	C. same			
	D. none of these			
17	The angle between sp ³ orbitals is:	B. 109.5°	R	Ε
	A. 127°			
	B. 109.5°			
	C. 180°			
	D. 90°			
18	The strength of sigma bond is higher for	C. p-p	R	Е
	A. s-s overlap	overlap		
	B. s-p overlap			
	C. p-p overlap			
	D. $sp^3 - s$ overlap			
19	the dipole moment of Cl_2 molecule is	A. 0.00	U	Μ
	A. 0.00			
	B. 1.03 D			
	C. 1.85 D			
	D. 1.67D			
20	The single bond which is covalent in nature is	B. Sigma	R	E
	A. Pi- bond	bond		
	B. Sigma bond			
	C. Coordinate covalent bond			
	D. None of these			
21	The sp ² hybrid orbitals are	B. Coplanar	U	D
	A. Non planar			
	B. Coplanar			
	C. Linear			
	D. None of these			
22	Which bond is nonpolar	A. Cl –Cl	R	Ε

	A. Cl–Cl			
	B. N-Cl			
	C. C-Cl			
	D. H – Cl			
23	Which atomic orbital is always involved in sigma	A. s- orbital	Α	Ε
	bonding			
	A. s- orbital			
	B. p- orbital			
	C. d- orbital			
	D. None of these			
24	In ethene (C_2H_4) molecule there are	A. Five	R	Ε
	A. Five sigma bonds and one pi bond	sigma bonds		
	B. six sigma bonds	and one pi		
	C. Four sigma bonds and two pi bonds	bond		
	D. None of these			
25	When gaseous anion and cations are brought	B. Lattice	Α	Μ
	closer, the energy involved is	energy		
	A. Electron affinity			
	B. Lattice energy			
	C. Electronegativity			
	D. Ionisation potential			
26	A molecule of AB ₂ type undergoes sp ³ hybridization	B. Bent	Α	D
	with two non – bonding electron pairs ,its geometry			
	should be			
	A. Linear			
	B. Bent			
	C. Pyramidal			
	D. Regular Tetrahedron			
27			U	Μ
28			R	Ε
29			R	Ε
30			U	Μ

S#	MCQ'S MATERIAL	KEY	CL	DL
	CHAPTER # 5 CHEMICAL ENERG	GETICS		
1	One Joule is equals to	A. 0.239 Cal	R	Ε
	A. 0.239 Cal			
	B. 0.391 Cal			
	C. 0.398 Cal			
	D. 4.184 Cal			
2	This is not an extensive property	C. Density	R	Ε
	A. Internal energy			
	B. Enthalpy			
	C. Density			
	D. Entropy			
3	This is an intensive property:	D. Refractive	U	В
	A. Internal energy	index		
	B. Enthalpy			
	C. Volume			
	D. Refractive index			
4	The bulk properties of a system that can be measured	C.	R	Μ

	ancily are	Maanaaania		
	easily are	Macroscopic		
	A. Microscopic B. Chamical			
	D. Chemical C. Magroscopia			
	D. Dhysical			
5	D. Physical	D. Winneriter	•	М
5	A Entropy	B. Viscosity	A	IVI
	A. Entropy			
	B. VISCOSITY			
	C. Enthalpy			
-	D. Internal Energy		- D	-
6	Any real or imaginary line or wall which separates a	B. Boundary	R	D
	system from its surrounding, is called the			
	A. System			
	B. Boundary			
	C. State			
	D. Surrounding			
7	1 Cal. Is equal to:	C. 4.184J	Α	Μ
	A. 0.239 J			
	B. 1.98 J			
	C. 4.184J			
	D. 8.314J			
8	The heat content of a system is called:	B. Enthalpy	Α	Ε
	A. Internal energy			
	B. Enthalpy			
	C. Entropy			
	D. Potential energy			
9	This is an intensive property	C. Mole	U	Μ
	A. Density			
	B. Mass			
	C. Mole			
	D. Volume			
10	Hess's Law, may be used to calculate	Α. ΔΗ	R	Е
- •	A. AH			
	B. AS			
	\mathbf{C} , $\mathbf{A}\mathbf{E}$			
	D. K			
11	Energy of Disorder of a system to make a chemical	B. Enthalpy	Α	D
	reaction possible	2. Linuarpy		
	A Internal energy			
	B Enthalpy			
	C Entropy			
	D Potential energy			
12	The energy profile diagram for an exothermic reaction	B 251	TT	м
14	is shown below in which reactant is 15 Land energy of	. 200	U	141
	Point B is 40 I. The energy of activation of this			
	reaction			
	↑ A ↑ B			
	I I I I I I I I I I I I I I I I I I I			
	Ž AH Ž AH			
	is in the second s			
	A. 15 J			

	B. 25J			
	C. 40 J			
	D. 55			
13	If the work is related with expansion, it is	C. positive	U	Μ
	A. Not done	_		
	B. Excess done			
	C. positive			
	D. Negative			
14	If the Process is done at constant volume heat will be	D . ΔΕ	R	Μ
	equals to			
	Α. ΔΗ			
	B. ΔV			
	C. ΔS			
	D. ΔE			
15	If the Process is done at constant Pressure heat will be	Α. ΔΗ	Α	D
	equals to			
	Α. ΔΗ			
	B. ΔV			
	C. ΔS			
	D. ΔE			
16	When 500 joule of work is done by a system by	D300	U	Μ
	absorbing 200 joule of heat what will be its ΔE			
	A. 300			
	B. 700			
	C700			
	D300			
17	Thermal decomposition is	B.	R	Ε
	A. Exothermic reaction	Endothermic		
	B. Endothermic reaction	reaction		
	C. Reversible reaction			
	D. Irreversible reaction			
18	Combustion is	A. Exothermic	R	Ε
	A. Exothermic reaction	reaction		
	B. Endothermic reaction			
	C. Reversible reaction			
	D. Irreversible reaction			
19	400 J work is done on a system by evolution of 50 J of	A. 350 J	U	Μ
	heat ΔE will be			
	A. 350 J			
	B350 J			
	C. 450 J			
	D450 J			
20	when the volume is constant the system is called as	D. Isochoric	R	Ε
	A. Isobaric			
	B. Adiabatic			
	C. Isolated			
	D. Isochoric			

S #	MCQ'S MATERIAL	KEY	CL	DL
	CHAPTER # 6 CHEMICAL EQUILI	BRIUM		
1	In the following reaction, Kp> Kc	C. PC15	R	Ε
	A. 2NO2 <====>N2O4	<======		
	B. H2 + I2 <=====>2HI	=> PCl3 + Cl2		

	C. PCl5 <====>PCl3 + Cl2			
	D. 2SO2 + O2 <====>2SO3			
2	The equation of Ksp of CaF2 is	B. Ksp =	R	Ε
	A. Ksp = $[Ca+2][F2]$	[Ca+2][F-]2		
	B. Ksp = $[Ca+2][F-]2$			
	C. Ksp = $[Ca + -][F-]$			
	D. $Ksp = [Ca][F]$			
3	For a reversible reaction, If the concentrations of	C. Remain the	U	Μ
	reactants are doubled, then the equilibrium constant	same		
	will:			
	A. also be doubled			
	B. Be halved			
	C. Remain the same			
	D. Become one-fourth			
ŀ	The yield of ammonia in Haber's process is favored by	B. High	R	Μ
	A. High pressure and high temperature	pressure and		
	B. High pressure and low temperature	low		
	C. low pressure and high temperature	temperature		
	D. low pressure and low temperature			
5	The extent of reaction will be maximum for this Kc	D. 10^3	Α	Μ
	value:			
	A. 10 ⁻³			
	B. 0.1			
	C. 10			
	D. 10 ³			
5	With an increase in temperature of a system involving	B. move in the	R	D
	exothermic reaction will:	reverse		
	A. move in the forward direction	direction		
	B. move in the reverse direction			
	C. remain equilibrium			
	D. none of these			
7	For the reaction $2NH3 \leftrightarrow N2 + 3H2$ the relationship	B. $Kp > Kc$	Α	\mathbf{M}
	between Kc and Kp is :			
	A. $Kp = Kc$			
	B. $Kp > Kc$			
	C. Kp <kc< td=""><td></td><td></td><td></td></kc<>			
	D. $Kp \leq Kc$			
3	The most favourable conditions of temperature and	A. low	Α	Ε
	pressure for oxidation of SO2 into SO3 is:	temperature		
	A. low temperature and High pressure	and High		
	B. Low temperature and low pressure	pressure		
	C. High temperature and High Pressure			
	D. High temperature and low pressure			
)	Addition of KCl to AgCl solution causes:	B. Decrease in	U	Μ
	A. increase in the ionization of AgCl	the ionization		
	B. Decrease in the ionization of AgCl	of AgCl		
	C. No effect on the ionization of AgCl			
	D. Increase in the concentration of Ag+ ion			
0	Precipitation occurs if the ionic concentration is:	B. More than	R	Ε
	A. Less than Ksp	Ksp		
	B. More than Ksp			
	C. equal to Ksp			
	D. none of these			

11	If Ka is yory small	A Povorso	•	D
11	A Deverse reaction will acour	A. Kevelse	A	D
	A. Reverse reaction will occur D. Enguand reaction will take place			
	B. Forward reaction will take place	occur		
	C. More products will be formed			
	D. None of these	D 110 10		
12	which of these reactions have same value of Kc and Kp	B. H2 + I2	U	Μ
	A. N2 + 3H2 $<====>2NH3$	<========		
	B. H2 + I2 <=====> 2HI	=> 2HI		
	C. PCl5 <====>PCl3 + Cl2			
	D. 2SO2 + O2 <====>2SO3			
13	The solubility product (Ksp) of AgCl is 1 x 10-10	B. greater than	U	Μ
	mole2 dm-6. its precipitation occurs if the product of	Ksp		
	ionic concentration is	1		
	A. less than Ksp			
	B greater than Ksp			
	C Equal to Ksn			
	D Twice to Ksp			
11	The active masses of reacting substances means	A mole/dm3	D	м
14	A mole/dm ²	A. mole/um5	N	IVI
	A. $\operatorname{Hole}/\operatorname{dH}_2$			
	B. gm/dm_3			
	C. mol/cm3			
	D. gm/cm3			
15	The change of concentration of reacting substance in a	A. Rate of	Α	D
	unit time is	reaction		
	A. Rate of reaction			
	B. Rate constant			
	C. Rate law			
	D. Velocity constant			
16	The degree of ionization of an electrolyte is suppressed	B. Common	U	Μ
	by the addition of another electrolyte containing a	ion effect		
	common ion this phenomenon is called as			
	A. Solubility Product			
	B Common ion effect			
	C Le-Chatelier's principle			
17	When the product of ionic concentrations of speringly	A Draginitated	D	Г
1/	when the product of forme concentrations of sparingry	A. Flecipitateu	N	Ľ
	soluble sait is greater to its solubility product the	solution		
	solution is said to be a			
	A. Precipitated solution			
	B. Saturated solution			
	C. Supersaturated solution			
	D. V.Dilute solution			
18	When the product of ionic concentrations of sparingly	B. Saturated	R	Ε
	soluble salt is equals to its solubility product the	solution		
	solution is said to be a			
	A. Precipitated solution			
	B. Saturated solution			
	C Supersaturated solution			
	D V Dilute solution			
10	Addition of actalyst to a reversible resultion will	C dece not	TT	ЛЛ
19	Addition of catalyst to a reversible reaction will	C. does not	U	IVI
	the rate of reaction	Affect		
	A. Increases			
	B. Decreases			

	C. does not Affect D. Effect			
20	Solubility product is related to A. soluble salts B. Insoluble salts C. Sparingly soluble salts D. Coloured salts	C. Sparingly soluble salts	R	E

S #	MCQ'S MATERIAL	KEY	CL	DL
	CHAPTER # 7SOLUTION AND ELEC'	TROLYTES		
1	Universal indicator in acid gives	D. Red color	R	Ε
	A. Green colour			
	B. Pink color			
	C. Yellow color			
	D. Red color			
2	The oxidation number of Mn in K ₂ MnO ₄ is	C. +6	R	Ε
	A. +2			
	B. +4			
	C. +6			
	D. +7	G + 1 ⁺³		2.5
3	This ion has the greatest degree of Hydration:	$C. AI^{13}$	U	Μ
	A. Na $^{+2}$			
	$\begin{array}{c} B. Mg \\ C & A1^{+3} \end{array}$			
	$\begin{array}{c} C. AI \\ D & V^+ \end{array}$			
4	D. K The melority of a solution containing 52 a No CO	D 0 5	D	м
4	The molarity of a solution containing $55g \operatorname{Na}_2\operatorname{CO}_3$	D. 0.5	ĸ	IVI
	B 0.01			
	C = 0.02			
	D 0.5			
5	the molarity of a solution containing 4 g NaOH	C. 10M	Α	М
5	dissolved in 10 ml solution is:		1	111
	A. 0.4M			
	B. 0.1M			
	C. 10M			
	D. 1.0M			
6	The molarity of a solution containing 20g	B. 0.5	R	D
	NaOH dissolved in 1dm ³ solution will be:			
	A. 0.1			
	B. 0.5			
	C. 1			
	D. 2			
7	When 2 moles of solute are present in 2dm ³ of solution	B. 1M	Α	Μ
	then the concentration of solution is:			
	A. 0.5M			
	B. 1 M			
	C. 2M			
8	The oxidation number of Sulphur in NaHSO ₄ is:	D. +6	Α	E
	A2 P. 0			
	U. +4			

	D +6			
9	Conduction in metal is due to the movement of	B. Electrons	U	М
-	A. Ions	2.2.000	Ũ	
	B Electrons			
	C Protons			
	D Atoms			
10	The volume of 0.2 M H-SO, required for the	B 5cm ³	P	F
10	The volume of $0.2 \text{ W} \text{ m}_2\text{SO}_4$ required for the neutralization of 10 cm^3 of $0.1 \text{ M} \text{ NaOHis}$:	D. Jem	N	Ľ
	$\Delta = 2.5 \text{ cm}^3$			
	A. 2.3 cm^3			
	B. 5 cm $C = 10$ cm ³			
	$\begin{array}{c} \text{C. 10cm} \\ \text{D. 15} \end{array}$			
	D. 15 cm ⁻	10.5	<u> </u>	
1	The pH of milk of Magnesia is:	A. 10.5	Α	D
	A. 10.5			
	B. 10.0			
	C. 10.8			
	D. 11.0			
2	The percentage dissociation of NH ₄ OH is:	B. 1.4%	U	Μ
	A. 1.2%			
	B. 1.4%			
	C. 1.9%			
	D. 2.1%			
3	Metals placed above Hydrogen in the electrochemical	A. Are	U	Μ
-	series:	reducing agent	Ū	
	A Are reducing agent	reducing agent		
	B Are oxidizing agent			
	C serve as cathode in comparison cell			
	D have positive electrode potential			
1	The colour of the universal indicator in basic solution	D. Deen blue	D	м
.4		D. Deep blue	N	IVI
	15 A Vollow			
	A. Tellow			
	B. Green			
	C. Orange			
	D. Deep blue	~ -		
5	The oxidation number of Mn in $KMnO_4$ is:	C. +7	Α	D
	A. +3			
	B. +5			
	C. +7			
	D. +4			
6	A heterogeneous system consistof:	C. More than	U	Μ
	A. Only one phase	one phase		
	B. Three phases	1		
	C. More than one phase			
	D. Two phases			
7	In this, electric current produced by an oxidation –	D. Electrolytic	R	E
1/	reduction reaction	cell		
	A Standard cell			
	A. Statuaru Cell P voltoio coll			
	B. VOITAIC CEII C. Deversible cell			
	U. Keversible cell			
	D. Electrolytic cell		-	
18	Among these solutions, this one has the highest pH	A. 0.01M	R	E
	value:	NaOH		
	A. 0.01M NaOH			

		1		
	B. 0.02 M HCI			
	C. 0.01M NaHCO ₃			
10	D. $0.10 \text{ MH}_2\text{SO}_4$		TT	
19	This salt will Hydrolyse in water:	B. NH_4CI	U	M
	A. NaCl			
	B. NH ₄ Cl			
	C. KCI			
• •	D. Na_2SO_4			
20	In electrolytic cell, the anode is the electrode where	A. Oxidation	R	E
	A. Oxidation occurs	occurs		
	B. Reduction occurs			
	C. Both oxidation and reduction occurs			
	D. Neutralization occurs			
21	The number of gram moles of solute in 1 dm ³ of	B. Molarity		
	solution is			
	A. Normality			
	B. Molarity			
	C. Mole fraction			
	D. Molality			
22	The colour of universal indicator in neutral solution is	B. Green		
	A. Red			
	B. Green			
	C. Blue			
	D. Pink			
23	The oxidation number of Oxygen in hydrogen peroxide	D1		
	is			
	A. +2			
	B2			
	C. +1			
	D1			
24	The range of pH is	D. 0- 14		
	A. 1-10			
	B. 0-20			
	C. 1 – 100			
	D. 0-14			
25	In electrolytic cell cathode is	A. Negative		
	A. Negative			
	B. Positive			
	C. Neutral			
	D. None of these			
26	An electrochemical cell is based upon	B. Redox		
-	A. Acid-Base reaction	reaction		
	B. Redox reaction			
	C. Oxidation reaction			
	D. Reduction reaction			
27	If 200 cm^3 of 1M solution is diluted upto 200 cm^3 its	C. 0.1M		
- '	molarity will be			
	A 10M			
	B 0.2M			
	C = 0.1M			
	$\begin{array}{c} \mathbf{C} 0 1 \mathbf{W} \\ \mathbf{D} 1 \mathbf{M} \end{array}$			
20	D. IVI The evidetion number of S in U.SO. is	A + 6		
28	The oxidation number of S in H_2SO_4 is	A. +0		
	A. +0			

	B. 10		
	C. +4		
	D. Zero		
29	What is POH of a solution whose PH is 8	A. 6	
	A. 6		
	B. 10		
	C. 4		
	D. 2		
30	The oxidation number of I in KIO ₃ is	D. +5	
	A1		
	B. +1		
	C. +3		
	D. +5		

S #	MCQ'S MATERIAL	KEY	CL	DL	
	CHAPTER # 8 CHEMICAL KINETICS				
1	A powdered solid is more reactive than its chunks due	C. Greater	R	Е	
	to its	surface area			
	A. Higher temperature				
	B. Greater volume				
	C. Greater surface area				
	D. Low temperature				
2	The reaction $2NO_2 - 2NO + O_2$ is of :	C. second order	R	Ε	
	A. Zero order				
	B. first order				
	C. second order				
	D. Third order				
3	For a reversible reaction, If the concentrations of	C. Remain the	U	Μ	
	reactants are doubled, then the equilibrium constant	same			
	will :				
	A. also be doubled				
	B. Be halved				
	C. Remain the same				
	D. Become one-fourth				
4	They have low values of activation energy	B. Fast	R	Μ	
	A. Slow reactions	reactions			
	B. Fast reactions				
	C. Moderate reactions				
	D. Ionic reactions				
5	Rate= $K[NH_3]^2$. Keeping all the conditions same, if	D. 16X	Α	Μ	
	concentration of NH ₃ is increased by four times, then				
	the initial rate of reaction X will be:				
	A. 2X				
	B. 4X				
	C. 8X				
	D. 16X				
6	Photochemical reactions, which proceed only under the	A. Zero	R	D	
	influence of light, are of the order:				
	A. Zero				
	B. First				
	C. Second				
	D. Third				
7	This chemical method is used to determining the rate of	D. Hydrolysis	A	Μ	

	reaction:			
	A. Physical method			
	B. Colorimetric method			
	C. Polari metric method			
	D. Hydrolysis			
8	Reactions with high activation energy	A. Are slow	Α	Ε
	A. Are slow			
	B. Are fast			
	C. Are moderate			
	D. Do not occur			
9	The change of concentration of reacting substance in a	A. Rate of	U	Μ
	unit time is	reaction		
	A. Rate of reaction			
	B. Rate constant			
	C. Rate law			
	D. Velocity constant			
10	The addition of a catalyst in a reaction changes	B. Activation	R	Ε
	A. Internal energy	energy		
	B. Activation energy			
	C. Threshold energy			
	D. Gibbs free energy			
11	The active masses of reacting substances means	A. mole/ dm^3	Α	D
	A. $mole/dm^3$			
	B. gm/dm^3			
	C. mol/cm^3			
	D. gm/cm^3			
12	The energy profile diagram for an exothermic reaction	B. 25J	U	\mathbf{M}
	is shown below in which reactant is 15 J and energy at			
	Point B is 40 J. The energy of activation of this			
	reaction is			
	A. 15 J \uparrow A \uparrow B			
	B. 25J			
	C. 40 J			
	D. 55 J			
13	These have low values of activation energy	D. Fast	U	Μ
	A. Slow reactions	reactions		
	B. Moderate reactions			
	C. Ionic reactions			
1.4	D. Fast reactions			
14	which of the following is best to explain the action of	D. It decreases	K	Μ
	catalyst in speeding up a chemical reaction?	activation		
	A. It increases equilibrium constant of a reaction	energy		
	B. It increases kinetic energy of reacting molecules			
	C. it prevents reverse reaction			
1.7	D. It decreases activation energy			
15	which of the following are best to explain the rapid	C. Higher	Α	D
	increase in the rate of a chemical reaction as the	proportion of		
	temperature rises	molecules has		
	A. The collision frequency of molecule increases	the necessary		
	B. The collision became more violent	minimum		
	C. Higner proportion of molecules has the	energy to react		
	necessary minimum energy to react			

r	D. Dandhuashing has some soon			
16	D. Bond breaking becomes easy	A 52 KI/m ol	TT	м
10	The energy of activation for the feaction $2H_2O_2$	A. 35 KJ/11101	U	IVI
	\Box 2H ₂ O + O ₂ III absence of catalyst is 75 KJ/IIIOI the most likely value for the energy of activation in			
	most likely value for the energy of activation in			
	presence of catalyst is:			
	A. 55 KJ/mol			
	$\begin{array}{c} \mathbf{D}, \mathbf{J} \in \mathbf{K} \\ \mathbf{C}, 0 \in \mathbf{K} \\ \mathbf{V} = 0 \\ \mathbf{M} \\ $			
17	C. 98 KJ/III01	D 4	D	F
1/	representation of an organic compound	B. 4X	к	E
	propanone (CH ₃ COCH ₃) with rodine may be			
	represented by the equation \Box CU ICOCU \rightarrow U^{+}			
	$CH_3COCH_3 + I_2 \Box CH_2ICOCH_3 + H + I$			
	other conditions remaining same, what will be the			
	inding and acid all are doubled			
	$\begin{array}{c} \text{10ume and actd an are doubled} \\ \text{A} 2\pi \end{array}$			
	$\begin{array}{c c} A. & 2X \\ D & Ay \end{array}$			
	D°			
	$D. \delta x$			
18	The decomposition of Dinitrogen pentoxide in a	C. Electrical	R	Е
10	suitable solvent may be represented by the equation	conductivity of		-
	$2N_2O_5$ $\Box 4NO_2 + O_2$	solution		
	The measurement of which are of the following			
	physical quantities could not be used to determine the			
	rate of this reaction:			
	A. Volume of oxygen evolved			
	B. Pressure of oxygen evolved			
	C. Electrical conductivity of solution			
	D. Mass of reacting mixture			
19	Which of the following statements for the reaction	C. Rate is	U	Μ
	between H_2 and Cl_2 in presence of sunlight is correct?	independent of		
	A. Rate = K [H ₂] [Cl ₂]	of		
	B. The light lowers the energy of activation	concentration		
	C. Rate is independent of of concentration of	of Hydrogen		
	Hydrogen and Chlorine	and Chlorine		
20	Rate constant of a reaction depends upon:	A. Temperature	R	Ε
	A. Temperature	1		
	B. Initial concentration of reactants			
	C. Time of reaction			
	D Extent of reaction			

1. Constructed Response Questions (CRQs)

HOW TO ATTEMPT CRQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

